首页> 外文OA文献 >Mapping population synthesis event rates on model parameters II: Convergence and accuracy of multidimensional fits
【2h】

Mapping population synthesis event rates on model parameters II: Convergence and accuracy of multidimensional fits

机译:模型参数II上的人口合成事件率映射:   多维拟合的收敛性和准确性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Binary population synthesis calculations and associated predictions,especially event rates, are known to depend on a significant number of inputmodel parameters with different degrees of sensitivity. At the same time, forsystems with relatively low formation rates, such simulations are heavilycomputationally demanding and therefore the needed explorations of thehigh-dimensional parameter space require major -- often prohibitive --computational resources. In the present study, to better understand several keyevent rates involving binary evolution and binaries with two compact objects inMilky Way-like galaxies and to provide ways of reducing the computational costsof complete parameter space explorations: (i) we perform a methodical parameterstudy of the \emph{StarTrack} population synthesis code ; and (ii) we develop aformalism and methodology for the derivation of {\em multi-dimensional fits}for event rates. We significantly generalize our earlier study, and we focus onways of thoroughly assessing the accuracy of the fits. We anticipate that theefficient tools developed here can be applied in lieu of large-scale populationcalculations and will facilitate the exploration of the dependence of ratepredictions on a wide range binary evolution parameters. Such explorations canthen allow the derivation of constraints on these parameters, given empiricalrate constraints and accounting for fitting errors. Here we describe in detailthe principles and practice behind constructing these fits, estimating theiraccuracy, and comparing them with observations in a manner that accounts fortheir errors.
机译:已知二元总体合成计算和相关的预测,尤其是事件发生率,取决于具有不同程度敏感度的大量输入模型参数。同时,对于形成速率相对较低的系统,此类模拟的计算量很大,因此对高维参数空间的必要探索需要大量的(通常是禁止的)计算资源。在本研究中,为了更好地理解银河系星系中涉及二进制演化和具有两个致密对象的二进制的几个关键事件发生率,并提供减少完整参数空间探索的计算成本的方法:(i)我们执行有条理的参数研究。 emph {StarTrack}人口综合代码; (ii)我们开发了形式主义和方法论来推导事件发生率的{\ em多维拟合}。我们对先前的研究进行了广泛的概括,并且着重于彻底评估拟合的准确性。我们预计这里开发的有效工具可以代替大规模人口计算,并且将有助于探索速率预测对广泛的二元进化参数的依赖性。在给定经验约束并考虑拟合误差的情况下,这样的探索可以允许对这些参数的约束进行推导。在这里,我们详细描述了构建这些拟合,估算其准确性并将其与观测值进行比较(以解释其错误的方式)背后的原理和实践。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号